This article was downloaded by:
On: 16 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

To cite this Article Slaninová, J. and Thorn, N. A.(1983) 'Production of a High Affinity Antibody Specific to the Calcium-Free-Form of Calmodulin, Using N-Acetyl-muramyl-L-alanyl-D-isoglutamine-calmodulin Conjugate', Journal of Immunoassay and Immunochemistry, 4: 4, 395-406
To link to this Article: DOI: 10.1080/15321818308057017
URL: http://dx.doi.org/10.1080/15321818308057017

PLEASE SCROLL DOWN FOR ARTICLE

```
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.
```

PRODUCTION OF A HIGH AFFINITY ANTIBODY
SPECIFIC TO THE CALCIUM-FREE-FORM OF CALMODULIN, USING N-ACETYL-MURAMYL-L-ALANYL-D-ISOGLUTAMINE-CALMODULIN CONJUGATE

J. Slaninová and N.A. Thorn

Institute of Organic Chemistry and Biochemistry, Czechoslovak Academy of Sciences, 16610 Prague 6 and Institute of Medical Physiology C, University of Copenhagen, Blegdamsvej $3 c$, Copenhagen.

Abstract

Covalent coupling of N-acetyl-muramyl-L-alanyl-D--isoglutamine (MDP) to calmodulin was used in order to enhance its immunogenicity. Rabbit antibodies against calmodulin were obtained, interacting with the calcium--free-form of calmodulin. The radioimmunoassay was developed using the whole sera (titre 1:20,000) having a sensitivity of 20 pg per tube (50% displacement $500 \mathrm{pg} /$ assay tube). The radioimmunoassay shows the same concentrations of calmodulin in rat brain homogenate ($4.9 \pm 0.86 \mu \mathrm{~g} / \mathrm{mg}$ protein), bovine neurosecretosomes ($0.77 \pm 0.10 \mu \mathrm{~g} / \mathrm{mg}$ protein), and bovine neurohypophysial secretory vesicles ($0.05 \pm 0.01 \mu \mathrm{~g} / \mathrm{mg}$ protein) as the phosphodiesterase activation method.

(KEY WORDS: calmodulin, MDP, radioimmunoassay)

INIRODUCTION

Calmodulin - by far the mort wiciely distributed calciproteir is consicered to be a poor antigen, maybe because
of its structural and functional conservativeness throughout molecular evolution. There are in the literature several reports (1-7) describing preparation of antibodies against calmodulin and development of radio- or enzyme-linked immunoassays. However, there is a neeri for antisera with higher titres and greater affinity.

In this report we describe a preparation of antibodies to calmodulin using a new type of antigen for immunization, i.e. a conjugate of N-acety $\begin{aligned} & \text {-muramyl- } I_{1}-a l a n y l-D-i s o g l u t a-~\end{aligned}$ mine and calmodulin, and the development of a sensitive radioimmunoassay, as well as data about calmodulin content in secretory vesicles and neurosecretosones from ox neurohypophyses.

mateifill and methods

Calmodulin was purified according to ref. (8) from bovine brain. The purification was checked by the phosphodiesterase activation method (9). The final product used for immunization showed about 5% contamination by a low molecular weight component on SDS-electrophoresis. For the booster injections calmoculin was purified using fiplC. As a. standard for radioimmunoassay we used calmodulin purchasec from Fluka. ${ }^{125}$ I-calmodulin was either the preparation made by us, iodinated using the Iodogen method (10), or a commercial product from New Englanci Nuclear. Troponin ard Thyroglobulin were from Sigma. N-acetyl-muraryl-alanyl-D--isoglutamine (MDP) was a generous gift from N.Flegel, LéČiva, Prague.

Preparation of three types of antigen

i) Peroxicized calmodulin was prepared according to (7) starting from 20 mg of calmodulin. After freeze-Erying the peroxidized compound was dissolved in 2 ml of plysiological saline and stored at $-20^{\circ} \mathrm{C}$.
ii) Thyroglobulin-calmodulin conjugate was prepared using carbociimide (11), with 11.5 mg of thyroglobulin anc
2.7 mg of calmodulin coupled. After dialysis the solution was stored at $-20^{\circ} \mathrm{C}$.
iii) MDP-calmoculin conjugate was prepared also using carbodiimirle. 2. mg of MDP in 0.1 ml of water reacted with 2 mg of carbodiimide for 30 min . Then 8.9 mg of calmodulin in 0.5 ml of aqueous solution, pH 8.5 , was adcied. This mixture was stirred at room temperature for 24 h , then dialyzed against water, pH 8 (acjusted using NaHCO_{3}). After dialysis the conjugate was stored frozen at $-20^{\circ} \mathrm{C}$. The conjugate of HPLC-purified calmodulin $v i$ th MDP was prepared similarly using the same ratios of reagents.

Immunization

Altogether 8 rabkits were immunized in the following way: I. 3 rabbits (A_{ρ}, B, C) were immunized using peroxidized calmodulin (artigen (i)) on days $1 ., 7,9,13,15,17$, 35, 49, and MDP-calmodulin HPLC conjugate (antigen (iii)) on days 139 and 155. II. 2 rabbits (D. 2) were immunizec using thyroglobulin-calmodulin conjugate (antigen (ii)) on days $1,7,13,17$, and MDP-calmodulin-HPLC conjugate on daye 139 and 155 . III. 3 rabbits ($F_{\mathcal{L}} G, \underline{H}$) were immunized using MDP-calmơulin conjugate (antigen (iii) on days 1,7, 9, J3, 17, 35, 43, and using MDP-calmoculin-HPLC on days 139 and 155. All antigens used were diluted in such a way that the animals got about $250 \mu \mathrm{~g}$ of calmodulin per immunization. The sera were harvested on days $28,44,58,150$, and 167.

Radioimmunoassay

The antibories were detected using iodinated calmoduIin either prepared commercially or prepared by us using the Iodogen method. Conditions for testing the presence of antibodies as well as for the radioimmonoassay were as follows: 0.3 ml of appropriately diluted antiserum, 0.1 ml of 125 I-calmodulin (4,000-10,000 cpm) and 0.2 ml of standard calmorlulin or buffer or unknown sample vere incubated for 48 h at $4^{\circ} \mathrm{C}$. Separation of bound and free calmodulin was done using the double antibody technique. After $16-24$ in-
cubation with the second antibody the tubes were centrifuged at $3,000 \mathrm{rpm}$ for 25 min at $4^{\circ} \mathrm{C}$. Supernatant was aspirated and the sediment was counted for radioactivity. For diluting the antibody and ${ }^{125}$ I-calmodulin the following buffer was used: 0.1 M Tris-HCl, 1 mm ethylene-glycol-bis(α-aminoethyl ether)N, N^{1}-tetracetic acid (EGTA), 0.2\% bovine serumalbumin (BSA), pH 7.8. The standard calmodulin and samples were diluted in 20 mm N -Tris(Hydroxymethyl)methyl-2-aminoethane Sulfonic Acid (TES), 0.2% BSA, pH 7.0 . In some experiments CaCl_{2} was added to a final free concentration of 0.1 mA .

Sample preparation

The rat brain homogenate and extract were prepared as follows: rat brain was homogenized in 10 volumes of 190 mi sucrose, 25 mM EGTA and 20 mM TES, PH 7 , by a teflon-toglass homogenizer at $2,000 \mathrm{rpm}, 6$ strokes up and 6 strokes down. Part of the homogenate was stored frozen, part was centrifuged for 30 min at $100,000 \mathrm{gav}$. The supernatant was divided into two parts: the first was stored frozen as such, the second was quickly heated to $97^{\circ} \mathrm{C}$, cooled, and centrifuged for 5 min. in a Beckman microfuge, and the supernatant was stored at $-20^{\circ} \mathrm{C}$. Neurosecretory vesicles were prepared by the method of Gratzl et al. (12). Neurohypophysial nerve endings were prepared by trypsinization followed by centrifugation at 700 G for 10 min . and further centrifugation of the supernatant at $1,700 \mathrm{C}$ for 25 min . (13).

RESULTS

The results of immunization are given in Table 1. Rabbits immunized initially using peroxicized calmodulin (A, $B, C)$ did not respond by antibody formation, nor after a booster of MDP-calmodulin conjugate. All other rabbits immunized using MDP-calmodulin conjugate produced antibodies to calmodulin. The titres of the sera varied from 1:40 to
table 1

rabbit	harvest day				
	$\begin{array}{r} \text { I. } \\ 28 . \end{array}$	$\begin{aligned} & \text { II. } \\ & 44 . \end{aligned}$	$\begin{aligned} & \text { III. } \\ & 58 . \end{aligned}$	$\begin{array}{r} \text { IV. } \\ 150 . \end{array}$	$\begin{array}{r} v . \\ 167 . \end{array}$
A, B, C	$0^{\text {a,b }}$	$0^{\text {b }}$	$0^{\text {a,b }}$	$0^{\text {a }}$	$0^{\text {a }}$
D	$0^{\text {b }}$	n.d.	n.d.	1:10 ${ }^{\text {a }}$	1:50 ${ }^{\text {a }}$
E	1:20 ${ }^{\text {b }}$	n.d.	n.d.	1:20000 ${ }^{\text {a }}$	1:1500 ${ }^{\text {a }}$
F	1:40 ${ }^{\text {b }}$	1:20 ${ }^{\text {b }}$	n.d.	1:1000 ${ }^{\text {a }}$	1:160 ${ }^{\text {a }}$
G	1:200 ${ }^{\text {b }}$	1:200 ${ }^{\text {b }}$	1:300 ${ }^{\text {a }}$	1:300 ${ }^{\text {a }}$	1:50 ${ }^{\text {a }}$
H	$\begin{aligned} & 1: 500^{b} \\ & 1: 2000^{a} \end{aligned}$	$\begin{aligned} & 1: 300^{b} \\ & 1: 2000^{a} \end{aligned}$	1:700 ${ }^{\text {a }}$	1:1500 ${ }^{\text {a }}$	1:300 ${ }^{\text {a }}$

1:20,000. However, the highest titre was obtained after a booster injection anc changing the type of antigen in rabbit E. All the antisera (i.e. antisera from all 5 rabbits (D-Ii) from different bleedings) obtained had high affinity to the calcium-free form of calmorulin as remonstrated in Fig. 1 on the examples of antisera from rabbits E and H. In the presence of 0.1 mM calcium there was a low degree of binding of radioactive calmodulin to antibociies and this binding was difficult to displace using cold calmodulin. Cross-reactivity with troponin was very low - 4,500-5,000

FIGURE 1
Effect of Ca^{2+} on ${ }^{125}$ I-calmodulin binding to antibodies in the sera of rabbits E and H from the 4 th and 2 nd harvest resp.
Δ, O binding to $E-I V$ and $H-I I$ serum (see table I), resp., in the absence of calcium (1 mM EGTA),

4, binding to $E-I V$ and $H-I I$ serum, resp., in the presence of $10^{-4} \mathrm{M} \mathrm{Ca}^{2+}$.
times more troponin (by weight) was necessary to obtain the same degree of displacement, but the displacement curve was parallel to that of calmonulin (Fig. 2). Ihe displacement curves using rat brain extract boiled and unboiled and rat brain homogenate were parallel to that of standard calmodulin as well (Fig. 2). The sensitivity region of a radioimmunoassay using antisera from different bleecings of rabbits E, F, G, and H was $0.2-100$ ng per tube (50\% displacement of ${ }^{125}$ I-calmodulin by non-radioactive calmodulin was 18-60 ng per tube) in average. The sensitivity region of a radioimmunoassay using serum E-IV, having the titre $1: 20,000$, was $5-10$ times lower, i.e. $20-10,000 \mathrm{pg}$ per tube (50\% cisplacement 500 pg per tube).

The reljability of the method was tested by measuring the quantities of calmodulin in rat brain homogenate, bovine neurosecretosomes and bovine neurosecretory vesicles.

FIGURE 2

> Immunological cross-reactivity of calmodulin $(x-x)$ troponin $(0-0)$, rat brain homogenate $(\Delta-\Delta)$ and extract $(\square-\square)$.

TABLE 2
CALMODULIN CONTENT IN SAMPLES measured using radioimmunoassay and phosphodiesterase activation method ($\mu \mathrm{g} / \mathrm{mg}$ protein)

*) from ox neurohypophyses

The quantities of calmodulin found by the radioimmunoassay anc the phosphodiesterase activation method are given in Table 2.

DISCUSSION

N-Acetyl-muramy]-L-alanyl-D-isoglutamine (MDP)
represents the minimal structure required for substitution of mycobacteria in Freund's complete adjuvant. At the same time it is non-immunogenic. However, if it is coupled to a protein carrier, very high anticarrier titres can be obtained at the same time with high antiMDP-titres. The conjugation proceeds through the amino groups of calmociulin. Thus the native structure of the calmodulin molecule is only mildly modified. The modification is of the same kind as that obtained when calmodulin is iodinated using BoltonHunter reagent.

All rabbits immunized initially or for a booster using MDP-calmodulin conjugate responded by antibody formation with the exception of rabbits initially immunized using peroxicizec calmodulin. The failure of MDP-conjugate to induce antibody formation in these animals may be explained by some immunosuppressive mechanism of the previous doses
of peroxidized calmodulin. Our failure to induce antibody formation in the case of injections of peroxidized calmoculin alone may be due to lower doses used for immunization than that used by van Eldik et al. (7). However, van Eldik et al. state that the amount of antigen administered should not be critical.

The highest titre of antibodies was seen in rabbit E which received 4 injections of thyroglobulin-calmodulin conjugate before the 2 injections of MDP-HPLC-calmodulin conjugate. The small number of animals in each group makes it difficult to state whether this procedure should be preferred.

An average radioimmunoassay sensitivity as we found it is about lo-300 times higher than that previously reported in the literature, with the exception of ref. (2) where a similar sensitivity was described. However, in this case a purified antibody was used. Most antisera reported do not or only partly distinguish between the Ca^{2+}-bound and the Ca^{2+}-free form of calmodulin. The antisera described in this paper require the calcium-free form for binding. In other words the immunoreactive site reacting with the antibody in the sera described changes when binding calcium to such an extent that it is not recognized by the binding sites of the antibody. It is described in the literature that the calmodulin molecule undergoes a conformational change after hinding of calcium (i.e. it becomes more al-fa-helical). This would imply that our antibody is directed to that part of the calmodulin molecule that undergoes the maximal conformational change. Its specificity is therefore different from that described by van Eldik et al. (7). Ihis question, however, would need further study.

The fact that the antisera require the calcim-free form renders the assay complementary to the phosphodiesterase activation method where the calcium-bound form is active. The values for calmodulin content in brain homogenate agree well with the data in the literature. In the samples tested, the radioimmunoassay is giving the same values as the phosphociesterase activation method.

This work confirmed the immunogenicity of N-acetyl--muramyl-L-alanyl-D-isoglutamine-calmodulin conjugate. The conjugation of poor antigens to MDP seems therefore to be a method of choice for enhancing their immunogenicity. An additional advantage is that the use of mycobacteria in the adjuvant for immunization may be omitted.

ACKNOWLEDGEMENTS

The work was supported by the Danish Medical Research Council, the Novo's Fond, and Nordisk Insulin Fond. We want to thank Elin Engberg for excellent technical help.

Address for reprint requests: N.A.Thorn, Department of Nedical Physiology C, The Panum Institute, Blegdamsvej 3 C , DK-2200 Copenhagen N, Denmark.

REFERENCES

1. Dedman, J.R., Welsh, M.J. and Means, A.R. Ca^{2+}-depencent requlator: Production and characterisation of a monospecific antibody, J. biol. Chem. 1978, 253: 7515-7521.
2. Chafouleas, J.G., Dedman, J.R., Munjal, R.P. and Means, A.R. Calmodulin. Development and application of a sensitive radioimmunoassay, J. biol. Chem. 1979, 254: 10262-10267.
3. Wallace, R.W. anc Cheung, W.Y. Calmodulin: Production of an antibody in rabbit and development of a radioimmunoassay. J. biol. Chem. 1979, 254: 6564-6571.
4. Speaker, M.G., Sturgill, T.W., Orlow, S.J., Huachia, G., Pilko-Hirst, S. and Rosen, O.M. The effect of tri-
fluoperazine on the macrophage-like cell line. Ann.N.Y.Acad.Sci. (USA), 1980, 356: 162-178.
5. Habauer, I., Pradhan, S. and Yang, H.Y.T. Role of calmoriulin in đopaminergic transmission. Ann.N.Y.Acad.Sci (USA). 1980, 356: 292-303.
6. Ancersen, B., Osborn, M. and Weber, K. Specific visualization of the distribution of the calcium dependent regulatory protein of cyclic nucleotide phosphodiesterase (modulator protein) in tissue culture cells by immunofluorescence microscopy: mitosis and intercellular brirge. Cytobiologie (Eur. J. Cell. Biol.) 1978, 17: 354-364.
7. Van Eleik, L.J. and Watterson, D.N. Reproducible production of antiserum against vertebrate calmodulin and cetermination of the immunoreactive site. J. biol. Chem. 1981, 256: 4205-4210.
8. Watterson, D.M., Harrelson, W.G., Keller, P. M., Sharief, F. anr Vanaman, T.C. Structural similarities between the Ca^{2+}-dependent regulatory proteins of $3^{\prime}, 5^{\prime}$ cyclic nucleotide phosphodiesterase and actomyosin ATPase. J. biol. Chem. 1976, 251: 4501-4513.
9. Olsen, S.F., Slaninova, J., Treiman, M., Særmark, T. ane Thorn, N.A. Calmodulin binding to secretory granules isolated from hovine neurohypophyses. Acta Physiol. Scand., in press.
10. Salacinski, P.R.P., McLean, Ch., Sykes, J.E.C., Cle-ment-Jones, V.V. and Lowry, P.J. Iodination of proteins, glucoproteins, and peptides using a solic phase oxicizing agent, $1,3,4,5-t e t r a c h l o r o-3, ~ 6-$ ciphenyl glycoluril (iodogen), Analyt. Biochem. 1981, 117: 136-146.
11. Sofroniew, M.V., Madler, M., Muller, O.A. and Scriba, P.C. A method for consistent production of high quality antisera to small peptide hormones. Fresenius. Z. Anal. Chem. 1978, 290: 163-163.
12. Gratzl, M., Torp-Pedersen, C., Dartt, D., Treiman, M. and Thorn, N.A. Isolation and characterization of secretory vesicles from bovine neurohypophyses. HoppeSeyler's z. Physiol. Chem. 1980, 361: 1615-1628.
13. Slaninova, J., Særmark, T. and Thorn, N.A. Manuscript in preparation.
14. Reichert, Ch.M., Carelli, C., Jolivet, M., Audibert, F., Lefrancier, P. and Chedid, L. Synthesis of conjugates containing N-Acetylmuramyl-L-Alanyl-D-Isoglutaminyl (MDP). Their use as hapten-carrier systems. Mol. Immunol. 1980, 17: 357-363.
